Twisted conjugacy in fundamental groups of geometric 3-manifolds

نویسندگان

چکیده

A group G has the R ? -property if for every ? ? Aut ( ) , there are an infinite number of -twisted conjugacy classes elements in . In this note, we determine = ? 1 M all geometric 3-manifolds

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Conjugacy in Braid Groups

In this note we solve the twisted conjugacy problem for braid groups, i.e. we propose an algorithm which, given two braids u, v ∈ Bn and an automorphism φ ∈ Aut(Bn), decides whether v = (φ(x))−1ux for some x ∈ Bn. As a corollary, we deduce that each group of the form Bn o H, a semidirect product of the braid group Bn by a torsion-free hyperbolic group H, has solvable conjugacy problem.

متن کامل

Conjugacy Problem in Groups of Non-oriented Geometrizable 3-manifolds

We have proved in [Pr] that fundamental groups of oriented geometrizable 3manifolds have a solvable conjugacy problem. We now focus on groups of non-oriented geometrizable 3-manifolds in order to conclude that all groups of geometrizable 3-manifolds have a solvable conjugacy problem.

متن کامل

Twisted Conjugacy Classes in Nilpotent Groups

A group is said to have the R∞ property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R∞ property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n ≥ 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point ...

متن کامل

Quantum Deformations of Fundamental Groups of Oriented 3-manifolds

We compute two-term skein modules of framed oriented links in oriented 3-manifolds. They contain the self-writhe and total linking number invariants of framed oriented links in a universal way. The relations in a natural presentation of the skein module are interpreted as monodromies in the space of immersions of circles into the 3-manifold.

متن کامل

Injectivity Radius and Fundamental Groups of Hyperbolic 3-manifolds

It is shown that for each integer n > 1 there exists a constant Rn > 0 such that if M is a closed hyperbolic 3-manifold with Rank π1(M) = n, then the injectivity radius of M is bounded above by Rn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2021

ISSN: ['1879-3207', '0166-8641']

DOI: https://doi.org/10.1016/j.topol.2020.107568